首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51569篇
  免费   5296篇
  国内免费   2481篇
电工技术   3674篇
技术理论   1篇
综合类   4104篇
化学工业   7087篇
金属工艺   2001篇
机械仪表   3438篇
建筑科学   7573篇
矿业工程   1105篇
能源动力   4125篇
轻工业   5252篇
水利工程   682篇
石油天然气   2417篇
武器工业   985篇
无线电   3135篇
一般工业技术   4877篇
冶金工业   2372篇
原子能技术   363篇
自动化技术   6155篇
  2024年   155篇
  2023年   965篇
  2022年   1843篇
  2021年   2172篇
  2020年   2223篇
  2019年   1888篇
  2018年   1792篇
  2017年   2082篇
  2016年   2161篇
  2015年   2207篇
  2014年   3444篇
  2013年   3281篇
  2012年   3913篇
  2011年   4005篇
  2010年   3002篇
  2009年   3025篇
  2008年   2620篇
  2007年   3349篇
  2006年   2846篇
  2005年   2422篇
  2004年   1949篇
  2003年   1609篇
  2002年   1294篇
  2001年   1069篇
  2000年   779篇
  1999年   608篇
  1998年   407篇
  1997年   353篇
  1996年   335篇
  1995年   242篇
  1994年   197篇
  1993年   147篇
  1992年   118篇
  1991年   100篇
  1990年   82篇
  1989年   63篇
  1988年   49篇
  1987年   38篇
  1986年   20篇
  1985年   34篇
  1984年   45篇
  1983年   30篇
  1982年   29篇
  1980年   47篇
  1965年   19篇
  1964年   28篇
  1963年   26篇
  1961年   22篇
  1956年   18篇
  1955年   25篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
11.
《Ceramics International》2022,48(22):33167-33176
This study evaluates the luminescence performance of fired clay bricks coated with SrAl2O4:Eu/Dy phosphor. To do so, SrAl2O4:Eu/Dy phosphor was first produced using the traditional solid-state reaction synthesis technique. The prepared phosphor was then used for coating fired clay bricks to analyze the luminescence performance via spectral analysis, decay characteristics, and microstructure of the bricks. The results reveal that excitation and emission spectra of the phosphor coated bricks range from 200 to 480 nm and 455 to 650 nm, respectively, suggesting that the phosphor coated bricks have the capacity of absorbing light with a wide range of wavelengths. The peak wavelength projected at 511 nm in the emission spectrum is achieved, which indicates 4f65 d1-4f7 transition of Europium (Eu2+). The repeated excitation and deexcitation of Eu2+ by using hole traps and trap levels offered by Dysprosium (Dy3+), exist between the ground and the excited state of Eu2+ leads to luminescent phenomenon. Moreover, the decay characteristics has revealed that phosphor coated bricks can emit light for a considerable amount of time (>8.5 min) upon the removal of the excitation source. The results reveal that phosphor coated bricks has the potential of increasing energy efficiency of residential and commercial buildings.  相似文献   
12.
This paper carefully evaluates the electrocatalytic activity of Sr2FeMo0.5Mn0.5O6 (SFMM) double perovskite as a candidate to substitute the state-of-the-art Ni/YSZ fuel electrode. The electrochemical performance of a 40% SFMM/CGO composite electrode was studied in CO/CO2 and H2 with different oxygen partial pressure. Two different cell configurations are prepared at a relatively low temperature of 800 °C to increase the electrochemically active surface area. The cell was supported with a 150 μm 10Sc1CeSZ electrolyte in the first configuration. The cell in the second configuration was made by applying a 400 nm thin 8YSZ layer on 150 μm CGO electrolyte to improve the electrolyte ionic conductivity. Improving catalytic activity with increasing oxygen partial pressure is a key characteristic of the developed electrode. The polarization resistance of about 0.34 and 0.56 Ω cm2 at 750 °C in 3%H2O + H2 and 60% CO/CO2 makes this electrode a promising candidate for SOCs application.  相似文献   
13.
黄惠兰  文翔  李刚  汤维 《太阳能学报》2022,43(2):373-379
以H型垂直轴风力机及其内含圆柱形实体为研究对象,对NACA0018翼型的五叶片H型垂直轴风力机的气动性能进行数值模拟和实验验证。分析8种不同直径的内含圆柱体,在内含实体截面积占风轮迎风面积之比分别为21.2%、50.0%和76.9%时,风力机风能利用率的峰值分别下降8.04%、20.7%及74.3%。结果表明:随着内含实体直径的增大,风能利用率的峰值逐渐减小,开始较为缓慢,达到一定值时快速下降。小直径内含实体主要影响叶片在下风区的转矩,对风能利用率的影响较小,而大直径内含实体还会影响叶片在上风区的转矩,其风能利用率迅速减小。对于内含固定直径的实体,比如在现有建筑物外侧安装风力机时,其风轮半径的选择需综合考虑风能利用率和风力机的建造成本两方面的因素。研究结果可为建筑物与垂直轴风力机进行有效结合以提高风能的利用提供参考。  相似文献   
14.
In the present work it is found that the pyrotechnic composition VS-2 can be initiated with flash lamps IFC-500 and EVIS. VS-2 pyrotechnic composition contains 90% of mercury(Ⅱ) 5-hydrazinotetrazolate perchlorate and 10% of optically transparent copolymer of 2-methyl-5-vinyltetrazole and methacrylic acid (PVMT). We have found that the flash lamps make it possible to initiate combustion of VS-2 composition with its transition to detonation both in cylindrical charges placed in brass caps of 5 mm diameter and 2 mm high, and film charges with 10 mm×80 mm in size and surface weights of 60 mg·cm-2 and 90 mg·cm-2, showing ignition delay times 10 μs and 3 μs, respectively. We also measured detonation velocities for VS-2 composition film charges, which were 4375-4505 m·s-1 (of the charge being surface mass 60 mg·cm-2) and 4221-4281 m·s-1 (of the charge being surface mass 90 mg·cm-2) and their blasting action on the aluminum plate. The depths of the normal shock wave imprints at the charge-barrier interface were 0.6-0.7 mm (for surface mass of the film charges 60 mg·cm-2) and 1.2-1.3 mm (for surface mass of the film charges 90 mg·cm-2).  相似文献   
15.
In the present work, the heating performance of a new system combined with a new modified baseboard radiator and fan coil is investigated. Using longitudinal fins with special geometry and also forced airflow at the end of the system causes that at the lower inlet water temperature compared with the conventional models, higher heat output rate be obtained. The heat output rate of the new modified system is obtained by experimental metrology based on the European Standard No. EN-442. Temperature and velocity distribution in the room space is done by simulation of the modified system in the Flovent software. Computational fluid dynamics (CFD) results are validated against experimental results and there is a good agreement between them. Also, the energy consumption of the system during the winter season is calculated in TRANSYS software. Experimental results show that the heat output rate of a new modified heating system with inlet water temperature in the range of 45–55°C is on average 4.17 times higher compared with the conventional model. CFD simulation also showed that the combined system provides good thermal comfort conditions. Energy consumption of the new system reduced about 13% compared with conventional models.  相似文献   
16.
《Ceramics International》2022,48(11):15252-15260
The Co3O4, as a potential anode of lithium-ion batteries, has gained considerable attention because of high theoretical capacity. However, the Co3O4 is suffering from serious structure deterioration and rapid capacity fading due to its bulky volume change during cyclic charge/discharge process. Herein, to stabilize the lithium storage performance of the Co3O4 nanoparticles, a characteristic carbon scaffold (HPC) integrating hollow and porous structures has been fabricated by a well-designed method for the first time. The ultrafine Co3O4 nanoparticles are cleverly anchored on the HPC (HPC@Co3O4) and hence achieve significantly improved electrochemical properties including high capacity, improved reaction kinetics and outstanding cycle stability, showing high capacity of 1084.7 mAh g-1 after 200 cycles at 200 mA g-1 as well as 681.4 mAh g-1 after 300 cycles at 1000 mA g-1. The HPC@Co3O4 therefore shows good promising for application in advanced lithium-ion battery anodes. The results of the systematically material and electrochemical characterizations indicate that the synergistic effects of ultrafine Co3O4 nanoparticles and well-designed HPC scaffolds are responsible for the outstand performance of the HPC@Co3O4 anode. Moreover, this work can enrich the understanding and development of stable and high-performance metal oxide-based lithium-ion battery anodes for advanced lithium storage.  相似文献   
17.
分析了静电产生的原因,阐述了粉体含能材料生产中的静电起电现象、静电的危害、静电安全性评估标准以及建立在此标准基础上的静电放电危险的评价办法,提出了粉体含能材料在生产、运输中所需要采取的静电防护措施。  相似文献   
18.
The study of shock wave propagation in a detonation chamber is of great importance as a part of the plate forming process. Investigations related to the effects of premixed gas detonation on the deflection of a plate require in-depth examination. An Eulerian-Lagrangian numerical simulation is conducted using the space-time conservation element and solution element method of LS-DYNA software to study the effect of confined multi-point ignited gaseous mixture on the dynamic response of thin plates clamped at the end of a combustion chamber. The FSI couples a Lagrangian finite element solver with a Eulerian fluid solver in a 2D space with detailed chemistry of H2–O2 mixture. The solution contains the detonation wave propagation through the combustion chamber and its interaction with the plate. The influence of variation in the multi-point ignition locations and combustion chamber dimensions on the pressure history and plate deflection is studied. To verify the model, a comparison with the experimental study is carried out using an adjustable model representative of the real experiment. The verified model is used to link the evolution of plate shape with the arrival time and intensity of shock waves within the chamber. It is found that a longer distance between the ignition point and the plate intensifies the ultimate deflection of the plate. In addition, a fairly large combustion area employed in a direction rather than transverse to the plate surface is unable to influence the ultimate deformation of the plate.  相似文献   
19.
To improve the fuel economy, it is crucial to promote the low-temperature performance in eliminating diesel emissions. The work investigates the impact of different MnO2/Mn2O3 phase ratio on the low-temperature performance of Pt-based monolithic diesel oxidation catalyst. Near equal ratio of MnOx phase could form the three-phase (platinum, MnO2, Mn2O3) interfacial structure, leading to the smaller platinum particle size and exhibiting the higher interface rate (1.6–11.1 times) than other mono-manganese oxide with platinum. Besides, the higher oxygen mobility and more active oxygen species could be contributed to the positive effect of Pt/MnOx interface, which are prevalent to activate the reactant and greatly enhance the TOF value (1.4–20.8 times). The results imply that the modification of multi-phase metal/oxide interface is potential in dispersing platinum for greatly enhancing the catalytic efficiency.  相似文献   
20.
Sealing performance between two contacting surfaces is of significant importance to stable operation of proton exchange membrane (PEM) fuel cells. In this work, an analytical micro-scale approach is first established to predict the gas leakage in fuel cells. Gas pressure and uneven pressure distribution at the interface are also included in the model. At first, the micro tortuous leakage path at the interface is constructed by introducing contact modelling and fractal porous structure theory. In order to obtain the leakage at the entire surface, contact pressure distribution is predicted based on bonded elastic layer model. The gas leakage through the discontinuous interface can be obtained with consideration of convection and diffusion. Then, experiments are conducted to validate the numerical model, and good agreement is obtained between them. Finally, influences of surface topology, gasket compression and gasket width on leakage are studied based on the model. The results show that gas leakage would be greatly amplified when the asperity standard deviation of surface roughness exceeds 1.0 μm. Gaskets with larger width and smaller thickness are beneficial to sealing performance. The model is helpful to understand the gas leakage behavior at the interface and guide the gasket design of fuel cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号